
B
IMPLEMENTAT ION OF THE GRADUATED CYL INDR ICAL
SHELL MODEL IN PYTHON

The graduated cylindrical shell model (GCS, Thernisien et al., 2006; Thernisien,
2011) is an empiricalmodel that is commonlyused to represent the three-dimensional
structure of flux rope coronal mass ejections (CMEs) near the Sun. It defines a
croissant-like 3D shape with conical legs whose ends are anchored to the center of
the Sun, as shown in Figure 14.

𝑦

𝑥

𝛿𝛿
𝛼

ℎ

ℎapex

𝑦

𝑧

𝑅 ape
x

Figure 14: Illustration of the GCSmodel and definition of parameters ℎ, ℎapex, 𝛼, 𝛿 and𝑅apex,
based on Thernisien (2011). In this example, the parameters are set to 𝛼 = 30°
and 𝜅 = 0.35. The left panel shows a side view of the CME in the 𝑥𝑦 plane,
where the thick black line marks the outer contour of the flux rope and the red
line corresponds to its central axis. The dotted linesmark the boundary between
the front section and the legs. The dashed line is a circular arc around the central
point, showing that the front section does not have a constant radius. The right
panel shows a cut in the perpendicular 𝑦𝑧 plane, where the cross section of the
front is marked with a thick circle and the conical legs are indicated using the
thin lines.

The GCS geometry is constrained using three main parameters: The CME apex
height ℎapex (or, alternatively, the leg height ℎ), the angular half width 𝛼 of the
CME, and the so-called aspect ratio 𝜅, which corresponds to the half angle 𝛿 of the
leg cones:

𝜅 = sin 𝛿 (10)

The origin of the coordinate system shown in Figure 14 is fixed to the center of
the Sun, with the 𝑦 axis defining the propagation direction of the CME. Three ad-
ditional parameters describe its orientation: The heliographic latitude 𝜃 and longi-
tude 𝜙 (typically given in Stonyhurst or Carrington coordinates), and the tilt angle

141



𝛾, which defines the rotation around the 𝑦 axis in Figure 14. For a detailed descrip-
tion of the mathematical derivation of the GCS model, please refer to Thernisien
(2011).

The GCS model is typically employed in a forward modelling approach, i.e., the
model is visually compared to coronagraph observations of a CME and the input
parameters are then iteratively adjusted by the scientist to achieve a good fit. This
manual fitting process is ideally applied simultaneously to coronagraph images
from multiple viewpoints, such as from the Solar and Heliospheric Observatory
(SOHO)/Large Angle and Spectrometric Coronagraph Experiment (LASCO) and
Solar Terrestrial Relations Observatory (STEREO)/Sun Earth Connection Coronal
and Heliospheric Investigation (SECCHI) coronagraphs, to avoid ambiguity due
to the line of sight effect. The resulting GCS parameters for the best fit can then be
used for further evaluation, e.g. as input parameters for modeling the subsequent
CME propagation. Additional properties of the flux rope, such as the radius at the
apex 𝑅apex (see Figure 14) can also be calculated from these parameters, as derived
by (Thernisien, 2011).When applied to a sequence of consecutive images, the CME
kinematics can also be reconstructed.
The original implementation of the GCSmodel in the Interactive Data Language

(IDL)1 and a corresponding graphical user interface (GUI) were developed by Th-
ernisien et al. (2006) and are included in the SolarSoft software package (Freeland
andHandy, 1998) under the name scraytrace2. SolarSoft is a collection of IDL soft-
ware libraries thatwas originally developed in the 1990s bymembers of the Yohkoh
and SOHOmission teams and the NASA Solar Data Analysis Center (SDAC), and
some tools from other missions such as STEREO were also included later. Using
this GCS implementation requires a license of IDL, a local installation of Solar-
Soft and the corresponding database (SSWDB), which includes coronagraph im-
ages and calibration data. Obtaining and installing all these components is quite
involved for scientists that are not familiar with IDL and SolarSoft. Additionally,
the GCS implementation is only partially documented and not very flexible, as it
was initially hard-coded to work with only STEREO-A and -B data, with support
for SOHO being manually added later.

As described e.g. in the detailed review by Burrell et al. (2018), the Python pro-
gramming language is becoming increasingly popular in the solar and heliospheric
physics community, and consequently, various open source software libraries to
assist with the associated data analysis are available. Python is a modern, general-
purpose object-oriented programming language that is easy to learn and empha-
sizes code readability. According to the TIOBE Programming Community Index3,
it has recently surpassed Java as the second most popular programming language
in the world, and in contrast to IDL, it is open source software (OSS) and available
free of charge on all major operating systems.
SunPy (The SunPy Community et al., 2020), a library for working with solar

images from various missions, is one of the most widely-used Python toolkits for
solar physics. However, it does not yet provide anymodels for CME reconstruction

1 https://www.l3harrisgeospatial.com/Software-Technology/IDL
2 https://hesperia.gsfc.nasa.gov/ssw/stereo/secchi/idl/scraytrace
3 https://www.tiobe.com/tiobe-index/

142



in coronagraph images. Thus, an open source Python implementation of the GCS
model and a simple corresponding GUI application based on SunPy have been de-
veloped during the course of the study presented in Freiherr von Forstner et al.
(2021). It can be used both as as a standalone application as well as integrated into
existing Python-based plotting routines. The source code is available on GitHub at
https://github.com/johan12345/gcs_python, and is alsomirrored at Kiel Univer-
sity under https://gitlab.physik.uni-kiel.de/ET/gcs_python. It can be easily
installed with Python’s pip package manager as follows:

pip3 install git+https://github.com/johan12345/gcs_python.git

(provided that Python 3.7 or above is already installed).
The following sections will describe the design and usage of this software pack-

age, and its validation against the original IDL version.

B.1 GC S GEOMETRY

The basic GCS geometry is implemented in the gcs.geometry module. This code
is a close translation of the corresponding IDL routines from SolarSoft. Two basic
functions are provided to calculate the geometry of the GCS structure based on
the input parameters: The skeleton function (based on shellskeleton.pro in So-
larSoft) calculates the shape of the central axis of the flux rope (thin solid line in
Figure 14), which consists of two straight segments in the legs and a curved seg-
ment in the front. The desired resolution, i.e. the number of points along each part
of the curve, can be passed to the function. This central axis, which lies in the 𝑥𝑦
plane, then needs to be used to generate the outer shell of the flux rope, which con-
sists of circles that are perpendicular to the tangent vector at each point. For this
purpose, the skeleton function also provides the orientation of this tangent vector
as well as the radius of each circle. The gcs_mesh function (based on cmecloud.pro
in SolarSoft) then uses the output of the skeleton function to construct a 3Dmesh
by generating these circles around the central axis with the appropriate radius and
orientation. The parameters of the gcs_mesh function are the half angle 𝛼, the CME
height ℎapex, and the aspect ratio 𝜅, as well as the desired numbers of points along
the straight segments, along the front, and along each circle in the mesh.
In addition to these basic routines to construct the GCSmesh, there is also a func-

tion gcs_mesh_rotated, which uses the three angles 𝜃, 𝜙, 𝛾 to rotate the CME cloud
in 3D space, as well as the function gcs_mesh_sunpy, which converts the rotated
GCS mesh into a SunPy SkyCoord object. This object then contains the necessary
metadata about the coordinate system so that the model can directly be integrated
into a SunPy plot.

B.2 GRAPH I CAL US ER IN T ER FACE

In addition to the implementation of the GCS geometry, a convenient GUI was cre-
ated that can be used to fit theGCSmodel to coronagraph images. TheGUI is based
upon SunPy, which already provides functions to obtain coronagraph images and

143



x

y

z x

y

Figure 15: Results of the functions from the GCS Python implementation. The left panel
shows the central axis of the flux rope, calculated using the skeleton function,
in orange, and the surrounding circles generated by the gcs_mesh function in
blue. The right panel shows a 3D wireframe representation of the same data.
The input parameters 𝛼 and 𝜅 are the same as in Figure 14.

to perform the coordinate transformations necessary to overplot arbitrary points
in space on these images. Thus, its implementation was relatively straightforward.
For starting the GUI, a command line interface is provided. For example,

gcs_gui "2013-05-13 16:54" STB SOHO STA

starts the GCSGUIwith the closest available coronagraph images to the given date
and time from STEREO-B, SOHO and STEREO-A. Additional command line op-
tions are available to set which coronagraph should be used (-soho C2 or C3, and
-stereo COR1 or COR2) and whether to use running difference images (-rd) or di-
rect images. Running difference images are calculated by subtracting a previous im-
age (e.g. 1 h before) from the current one, so that moving features are highlighted.
The GUI components, e.g. sliders and text boxes for each input parameter, were

implemented using the PyQt5 library4, which provides Python bindings for the
popular GUI framework Qt. The GUI is defined in the gcs.gui module as the
GCSGui class. For embedding the solar images into the Qtwindow, it uses a plotting
canvas provided by the matplotlib plotting package (FigureCanvasQTAgg).

When the user starts the GUI, it first retrieves the desired coronagraph images
through the Internet. This is done using the Helioviewer.org Application Program-
ming Interface (API) 5, which directly provides images in JPEG2000 format to
which all necessary calibration and background subtraction routines were already
applied on the server side. This drastically simplifies and speeds up the process
compared to the IDL version, where images in FITS format need to be downloaded
manually from the respective mission sites, and where the calibration procedure
needs to be applied locally (requiring an installation of SSWDB). The JPEG2000
images provided by Helioviewer.org also include additional metadata about the
observer location and field of view, which are copied from the original FITS file

4 https://riverbankcomputing.com/software/pyqt/
5 https://api.helioviewer.org/docs/v2/

144



and are necessary to plot the images in the correct coordinate system (solar lati-
tude and longitude).

When the images are downloaded, the GCS GUI plots them using SunPy and
displays the result in the plotting canvas (see Figure 16). The GCS croissant mesh
is then plotted on top of these images and the user can adjust the GCS parameters
interactively with the six sliders and numerical input boxes on the right side of the
window. Three additional controls are provided: A checkbox to show or hide the
GCSmesh, a text view showing the calculated apex radius of the flux rope (𝑅apex, cf.
Figure 14), and a button to save the GCS parameters to a file. These data are stored
in the JavaScript Object Notation (JSON) format, a general-purpose data format
that is human-readable and can be easily handledwithmostmodern programming
languages. On the upper edge of the GCSwindow, the standardmatplotlib controls
are also shown to allow zooming and panning in the images as well as saving the
current set of images to a file.

Figure 16: Screenshot of the GCS Python GUI. The left part of the window shows the plot-
ting canvas with running difference coronagraph images of the April 15, 2020
CME (see Freiherr von Forstner et al., 2021). The user controls for the GCS pa-
rameters are shown on the right.

During the development of the GCS GUI, two problems with the data provided
to SunPy by the Helioviewer.org Application Programming Interface (API) were
discovered: First, the STEREO-B COR2 images were temporarily not available
through the API in October 2020, an issue which has since been resolved by the
Helioviewer.org team6. Second, there was an issue with the metadata included in
the SOHO/LASCO files: The SOHO spacecraft performs a roll maneuver every
three months to keep its high gain antenna oriented towards Earth. The files pro-
vided by Helioviewer.org already take this into account by rotating the images
accordingly, so that the solar north pole is always pointing upwards. However,
the metadata in the JPEG2000 files are not adjusted accordingly7, so SunPy still in-

6 https://github.com/Helioviewer-Project/helioviewer.org/issues/288
7 https://github.com/sunpy/sunpy/issues/4553

145



terprets these images as though they were rotated by 180°. This obviously caused
the location of the GCS model results in the LASCO images to be incorrect. Thus,
a workaround was implemented into the GCS GUI to reset the rotation metadata
of the LASCO files and also submitted a patch8 to the SunPy project to address
this issue, which is included in version 2.1 of SunPy.

Possible future improvements to the GCS GUI could include adding an option
to calculate base difference images as an alternative to the current options of direct
and running difference images, i.e. allowing the user to specify a fixed point in time
that should be used for the subtraction. It may also be helpful to include additional
controls for the user to adjust the contrast of the displayed images— this is already
possible in the IDL implementation, but only before starting the fitting process,
it cannot be changed interactively while already working on the fit. In addition,
further tools could be provided to facilitate the fitting of time series so that the user
can simply provide a start and end time, and the GUI would directly provide one
image after another and store the fitting results for each time step in one file. The
toolkit may also be easily extended to include support for additional data sources
as soon as they are implemented in SunPy, such as theWide-Field Imager onboard
Parker Solar Probe (WISPR, Vourlidas et al., 2016), theMetis coronagraph onboard
Solar Orbiter (Antonucci et al., 2020) and the Solar Orbiter Heliospheric Imager
(SoloHI, Howard et al., 2020).

B.3 VAL IDAT ION

To validate that the Python implementation of GCS yields the correct results, a
set of CMEs were re-plotted with the Python GCS GUI that have previously been
fitted using the IDL version to compare the resulting plots. One example of this is
shown in Figure 17 for a CME launched on May 13, 2013 (originally reconstructed
by Gou et al., 2020, Figure 2). The corresponding input parameters are shown in
Table 3.

Parameter Value

Stonyhurst Longitude 𝜙 [°] 270
Heliographic Latitude 𝜃 [°] 19

Tilt angle 𝛾 [°] 35
Half angle 𝛼 [°] 28

Apex height 𝑅apex [𝑅⊙] 10.8
Aspect ratio 𝜅 0.35

Table 3: GCS parameters for the May 13, 2013 CME shown in Figure 17.

Similar comparisons were performed for other CMEs with different character-
istics: The June 21, 2011 CME (originally reconstructed by Heinemann et al., 2019,
Table 1), theMay 25, 2014CME (originally reconstructed byDumbović et al., 2018a,

8 https://github.com/sunpy/sunpy/pull/4561

146



Figure 17: Validation of the GCS Python implementation. Both panels show the same CME
on May 13, 2013, with the GCS parameters listed in Table 3. The top image was
generated by the IDL implementation of GCS, while the bottom panel shows the
result of the new Python implementation.

Figure 5b), as well as the April 15, 2020 CME studied by Freiherr von Forstner et al.
(2021). In all cases, the GCS 3D meshes generated by the Python implementation
match the CME signatures in the coronagraph images aswell as the original results
from the IDL implementation. This shows that the Python version is implemented
correctly and can be used for scientific purposes.

147


